
Hyun-Myung Chun et al. / Physical Review E, 2019
Физики из Германии показали, что сильное магнитное поле может нарушить термодинамическое соотношение неопределенностей, связывающее относительную неопределенность токов и скорость диссипации энтропии. Для этого ученые рассмотрели упрощенную задачу — движение частицы, утопленной в жидкости с постоянной температурой, привязанной к началу координат упругой пружинкой и раскручиваемой постоянным внешним моментом. Кроме того, исследователи вывели более слабый аналог соотношения и показали, что он имеет простой физический смысл. Статья опубликована в Physical Review E, препринт работы выложен на сайте arXiv.org.
До тех пор, пока в термодинамической системе не установится равновесие, по ней текут токи, которые пытаются выровнять параметры системы во всех ее точках. Часть из этих токов можно использовать в практических целях — например, тепловой двигатель совершает работу за счет теплового тока, а молекулярные моторы работают за счет потока частиц. Другие токи преобразуют потенциальную работу в бесполезное тепло. Следовательно, чтобы оптимизировать использование двигателя, нужно подавить два фактора: неопределенность и диссипацию. Первый фактор связан с тепловыми флуктуациями, которые мешают точно предсказать эволюцию системы, то есть делают двигатель неуправляемым. Второй фактор, очевидно, снижает количество полезной работы, производимой двигателем.
К сожалению, несколько лет назад физики Андре Барато (Andre Barato) и Удо Зайферт (Udo Seifert) обнаружили, что одновременно избавиться от обоих факторов невозможно: если пытаться уменьшить тепловые потери, двигатель становится менее предсказуемым, и наоборот. По аналогии с принципом Гейзенберга из квантовой механики, который связывает неопределенности координаты и импульса частицы, ученые назвали открытую закономерность термодинамическим соотношением неопределенности. С момента открытия этого соотношения теоретики уже успели независимо проверить его для дискретных систем, эволюция которых описывается марковскими прыжками, и более приближенной к реальности динамике Ланжевена (Langevin dynamics).
Впрочем, в термодинамическом соотношении неопределенностей есть одна лазейка: его стандартное доказательство опирается на инвариантность наблюдаемых относительно обращений оси времени (то есть T-симметрию системы). Для систем, переменные которых меняют знак при подобном преобразовании, это доказательство не работает, а потому ограничение может не выполняться. В самом деле, в прошлом году группа ученых под руководством Удо Зайферта подтвердила, что соотношение нарушается в простейшем случае «недозатухшей» частицы в одномерном периодическом потенциале. «Недозатухшая» (underdamped) система — это колебательная система, в которой параметр затухания (проще говоря, трение) меньше единицы. Несколько месяцев спустя другая группа исследователей заметила, что это соотношение не выполняется для баллистического транспорта в многополюсных проводниках (multiterminal conductors), помещенных в магнитное поле.
В новой статье Удо Зайферт вместе с коллегами из Университета Штутгарта попытались установить механизмы, с помощью которых магнитное поле нарушает термодинамическое соотношение неопределенностей. Для этого исследователи рассмотрели двумерное движение заряженной частицы, плавающей в жидкости с постоянной температурой и привязанной к началу координат упругой пружинкой. Кроме того, исследователи «включили» постоянное магнитное поле, напряженность которого направлена перпендикулярно плоскости движения частицы, приложили к системе крутящий момент и учли белый шум. В рамках этой системы ученые рассчитывали «полезную» работу внешнего крутящего момента и диссипированное тепло, которые в сумме давали полное изменение энергии частицы, что согласуется со вторым законом термодинамики. Из-за наличия белого шума работа случайным образом колебались около средних значений. Коэффициент диффузии таких случайных колебаний, нормированный на квадрат средней работы, ученые рассматривали как меру относительной неопределенности ε2. Вторую величину, участвующую в термодинамическом соотношении неопределенности, — величину диссипации — исследователи определяли по скорости производства энтропии σ. В этих терминах соотношение неопределенности означает, что произведение Q = ε2×σ ≥ 1.

Слева: среднее количество работы, произведенное за время t, и функция ее распределения (колоколообразные кривые). Справа: траектории частиц. В обоих случаях синяя линия отвечает слабому полю B, направленному против крутящего момента, красная линия — слабому полю, направленному по моменту, серая линия — сильному полю, направленному по моменту
Hyun-Myung Chun et al. / Physical Review E, 2019
Рассматривая поведение системы при разных напряженностях магнитного поля, ученые обнаружили, что скорость производства энтропии обратно пропорциональна величине поля. Грубо говоря, чем сильнее магнитное поле, тем больше сила Лоренца и тем меньше радиус кривизны траектории частицы. Поскольку мощность и скорость производства энтропии пропорциональны размеру области, в которой локализована частицы, это уменьшение автоматически приводит к падению диссипации. В то же время, относительная неопределенность при увеличении поля остается постоянной (или даже уменьшается в случае легкой частицы). Эта зависимость связана с быстрым падением дисперсии работы в сильном магнитном поле (обратно пропорционально квадрату напряженности), которое компенсирует уменьшение работы. В результате соотношение неопределенностей в сильном магнитном поле превращается в Q ≥ 1/(1+B2). По словам авторов, модификация соотношения связана с тем, что сильное магнитное поле нарушает T-симметрию, которой обладала исходная система.

Модифицированное соотношение неопределенностей с учетом внешнего магнитного поля (красная линия) и значения параметров системы, рассчитанные при случайных значениях ее параметров
Hyun-Myung Chun et al. / Physical Review E, 2019
Наконец, ученые отмечают, что этот результат поднимает два важных теоретических вопроса. Во-первых, хотелось бы установить границы применимости соотношения неопределенности, коль скоро оно может нарушаться. В простейшей системе, рассмотренной физиками, таким условием выступала взаимная ориентация напряженности поля и внешнего крутящего момента (чтобы соотношение нарушилось, они должны смотреть в одну сторону). Во-вторых, исследователи предполагают, что помимо «традиционного» термодинамического соотношения неопределенностей может существовать и более слабое соотношение, которое выполняется для всех систем без исключения. Авторы надеются, что их результаты, полученные для простейшей системы и имеющие прозрачный физический смысл, поможет ответить на эти вопросы.
Обычно физики считают, что соотношение неопределенностей является исключительно квантовым эффектом, исчезающим при переходе к классическим системам. Однако в феврале прошлого года японские физики-теоретики показали, что соотношение, связывающее неопределенности времени и энергии, в действительности возникает во всех системах, эволюция которых описывается эрмитовым оператором — в том числе, в классических системах, в которых таким оператором выступает оператор Лиувилля. Кроме того, иногда соотношение неопределенностей можно «обхитрить» с помощью специально подобранных квантовых состояний. Как такие «хитрости» помогли ученым зарегистрировать гравитационные волны, можно прочитать в материале «Точилка для квантового карандаша».
Дмитрий Трунин
Отправьте нам запрос
Поиск на сайте
Наши клиенты и партнеры
Недавние публикации
- В скелете вымершего псового с патагонского погребения заподозрили останки питомца индейцев 16 апреля 2024
- Что нужно для развития в России технологий ИИ, обсудили на форуме «Открытые инновации» 16 апреля 2024
- На снимках солнечного затмения заметили огромное розовое пламя 15 апреля 2024
- Найден источник крупнейшей после Большого взрыва вспышки в космосе 12 апреля 2024
- Формирование визуомоторных ассоциаций оказалось зависимо от мозжечка 12 апреля 2024