Громких открытий в физике не было уже несколько десятилетий. Максимум — экспериментальные подтверждения того, что давно предсказала теория, вроде бозона Хиггса. Значит ли это, что фундаментальная физика переживает упадок? В книге «Уродливая Вселенная: как поиски красоты заводят физиков в тупик» (издательство «Бомбора»), переведенной на русский язык Оксаной Якименко, научный сотрудник Франкфуртского института передовых исследований Сабина Хоссенфельдер рассказывает, как увлечение физиков математической красотой направляет современные научные исследования, и что с этим не так. N + 1 предлагает своим читателям ознакомиться с отрывком, который посвящен фундаментальным симметриям природы и теории Великого объединения.


Сходящиеся линии

В последний раз теория всего была у человечества 2500 лет назад. Греческий философ Эмпедокл предположил, что мир соткан из четырех элементов: земли, воды, воздуха и огня. Аристотель позже добавил пятый, божественный элемент — эфир. Никогда больше объяснение всего не было таким простым.

В философии Аристотеля каждый элемент характеризуется двумя свойствами: огонь сухой и теплый, вода влажная и холодная, земля сухая и холодная, а воздух влажный и теплый. Изменения происходят, поскольку (1) элементы стремятся к своим «естественным местам» — воздух поднимается вверх, камни падают вниз и так далее — и (2) могут менять на противоположное по одному своему свойству зараз, если тому нет препятствий: так, например, сухой и теплый огонь может превратиться в сухую и холодную землю, а влажная и холодная вода — во влажный и теплый воздух.

Утверждение, что камни падают вниз, ибо такова их естественная склонность, не очень-то много объясняет, но то была, несомненно, простая теория, которую можно было проиллюстрировать удовлетворительно симметричной диаграммой (рис. 11).

Впрочем, даже в IV веке до нашей эры стало очевидно, что теория слишком уж проста. Алхимики начали выделять все новые и новые вещества, и теория со всего лишь четырьмя элементами не могла объяснить такого разнообразия. Однако только в XVIII веке химики поняли, что все вещества — комбинации относительно небольшого числа «элементов» (в то время думали, что их меньше сотни), которые дальше уже разложить нельзя. Наступила эра редукционизма.

А тем временем Ньютон понял, что падение камней и движение планет роднит общая причина: тяготение. Джоуль показал, что теплота — это вид энергии, как обнаружилось позднее — происходящий из движения крохотных частиц под названием «атомы». Для каждого химического элемента характерен свой тип атома. Максвелл объединил электричество и магнетизм в электромагнетизм. И всякий раз, когда прежде разрозненные эффекты получали объяснение в рамках общей теории, новые открытия и применения не заставляли себя долго ждать: приливы вызываются Луной, энергию можно использовать для охлаждения, колебательные контуры служат источниками электромагнитного излучения.

В конце XIX века физики заметили, что атомы способны испускать и поглощать только свет с определенными длинами волн, но объяснения наблюдавшимся регулярностям ученые дать не могли. Чтобы с этим разобраться, они разработали квантовую механику, которая объяснила не только атомные спектры, но и большинство свойств химических элементов. К 1930-м годам физики выяснили, что все атомы имеют ядро, состоящее из меньших частиц — нейтронов и протонов — и окруженное электронами. На стезе редукционизма это стало еще одной вехой.

Следующим шагом в истории объединения Эйнштейн примирил пространство и время и получил специальную теорию относительности, после чего свел воедино гравитацию и специальную теорию относительности, создав общую теорию относительности. В итоге возникла необходимость избавиться от противоречий между квантовой механикой и специальной теорией относительности, что привело к благополучному рождению квантовой электродинамики.

Полагаю, примерно на этом этапе наши теории были самыми простыми. Но уже тогда физики знали о радиоактивном распаде — явлении, которое даже квантовая электродинамика объяснить не могла. Ответственность за распады возложили на новое, слабое взаимодействие, добавив его в теорию. Затем коллайдеры достигли энергий, достаточно высоких для того, чтобы нащупать сильное ядерное взаимодействие, — и на физиков обрушился «зоопарк» элементарных частиц (см. вторую главу). Это временное приращение сложности быстро пресекли теория сильного ядерного взаимодействия и объединение электромагнитного и слабого взаимодействий в единое электрослабое, поскольку выяснилось, что большинство из той лавины частиц составные — собраны из всего лишь двадцати четырех частиц, которые уже нельзя разложить на части.

Эти двадцать четыре частицы (с бозоном Хиггса, добавившимся позже, их стало в итоге двадцать пять) остаются элементарными и сегодня, и Стандартная модель плюс общая теория относительности до сих пор объясняют все наблюдения. Мы несколько оживили их темной материей и темной энергией, но, поскольку у нас нет никаких данных о микроскопической структуре этих темных лошадок, в настоящее время их трудно увязать всех вместе.

Объединение, однако, шло столь успешно, что физики считали логичным следующим шагом появление теории Великого объединения.

***

Мы классифицируем симметрии своих теорий с помощью того, что математики зовут «группами». Группа содержит все преобразования, которые не изменят теорию, при условии что соблюдается симметрия. Группа симметрии круга, например, состоит из всех вращений вокруг его центра и обозначается как U(1).

Пока в нашей дискуссии о симметрии мы обсудили лишь симметрии уравнений, законов природы. Однако наблюдаемое нами описывается не самими уравнениями, а их решениями. И сам по себе факт, что уравнение обладает симметрией, совершенно не означает, что решения этого уравнения обладают той же симметрией.

Представьте себе волчок, крутящийся на столе (рис. 12). Окружающая его обстановка одинакова по всем направлениям, параллельным поверхности стола, значит, уравнения движения обладают вращательной симметрией относительно любой оси, перпендикулярной столешнице. Когда волчок закручивают, его движение сопровождается уменьшением момента импульса из-за трения. Поначалу волчок действительно подчиняется вращательной симметрии, но в конце концов он заваливается на сторону и останавливается. После этого его ось указывает уже в одном каком-то направлении. Мы говорим, что симметрия «нарушилась».

Подобное спонтанное нарушение симметрии — обычное дело в фундаментальных законах природы. Как иллюстрирует пример с волчком, будет ли система подчиняться симметрии — может зависеть от энергии системы. Волчок, пока обладает достаточной кинетической энергией, симметрии подчиняется. И только когда на трение растрачивается существенное количество энергии, симметрия нарушается.

То же относится и к фундаментальным симметриям. Энергии, с которыми мы обычно имеем дело в повседневной жизни, определяются температурой окружающей нас среды. С точки зрения физики элементарных частиц эти энергии ничтожны. Скажем, комнатная температура соответствует примерно 1/40 эВ, что на 14 порядков меньше энергии, затрачиваемой на Большом адронном коллайдере на столкновения протонов. При такой низкой энергии, соответствующей комнатной температуре, большинство фундаментальных симметрий нарушаются. При высоких же энергиях они способны восстанавливаться.

Симметрия электрослабого взаимодействия, например, восстанавливается как раз при энергиях, достигающихся на Большом адронном коллайдере, о чем сигнализирует нам рождение бозона Хиггса.

***

Стандартной модели нужны три разные группы симметрии — U(1) и SU(2) для электрослабого взаимодействия и SU(3) для сильного. Это маленькие группы, как видно по небольшим числам в скобках. Но более крупные группы симметрии зачастую содержат в себе несколько групп поменьше, так что одна большая группа, чья симметрия нарушается при высоких энергиях, могла бы породить Стандартную модель при энергиях, которые мы исследуем. Получается, теория Великого объединения — словно некий слон, а у нас сейчас, на низких энергиях, есть от него лишь ухо, хвост и нога. Целиком слон восстановится только при энергии объединения, оцениваемой примерно в 1016 ГэВ, что на 15 порядков превышает энергии Большого адронного коллайдера.

Сначала для симметрии Великого объединения была предложена самая маленькая группа, содержащая группы симметрии Стандартной модели, — SU(5). Такие объединенные силы в общем случае допускают новые взаимодействия, позволяющие протонам распадаться. А если протоны нестабильны, значит, нестабильны и ядра атомов. В подобных теориях объединения время жизни протона может достигать 1031 лет, существенно превышая возраст Вселенной на текущий момент. Однако в соответствии с квантовой механикой это попросту означает, что среднее время жизни протона таково. Раз протоны вообще могут распадаться, значит, это может происходить и быстро — просто быстрые распады будут событиями редкими.

В каждой молекуле воды 10 протонов, а в каждом литре воды около 1025 молекул воды. Поэтому вместо того, чтобы ждать 1031 лет, дабы увидеть распад одного протона, мы можем следить за огромным объемом воды, ожидая, пока распадется один из тамошних протонов. Подобные эксперименты проводятся с середины 1980-х годов, но еще никто не засек распада протона. Текущие наблюдения (а точнее, отсутствие оных) намекают на то, что среднее время жизни протона больше 1033 лет. Так что SU(5)-модель Великого объединения исключается.

Следующей была предложена группа побольше — SO(10), в этой модели объединения верхняя граница для времени жизни протона проходит повыше. С тех пор опробованы были еще несколько групп симметрии, и в некоторых моделях верхняя граница для времени жизни протона сдвинута аж до 1036 лет, что на порядки превышает даже возможности будущих экспериментов.

Помимо распада протона теории Великого объединения также предсказывают существование новых частиц, поскольку крупные группы содержат больше, чем есть в Стандартной модели. Предполагается, как обычно, что эти новые частицы слишком тяжелые, поэтому пока и не могли быть замечены. Таким образом, сейчас у физиков-теоретиков есть широкий ассортимент теорий объединения, застрахованных от опровержения на основании экспериментов в обозримом будущем.

Само по себе Великое объединение между тем не решает проблемы с массой бозона Хиггса. Физикам приходится еще и суперсимметризовать Великое объединение. Мы знаем, что суперсимметрия — если это суперсимметрия природы — должна нарушаться при энергиях выше тех, что нами пока достигнуты, ведь мы еще не засекли суперсимметричных частиц. Но мы так пока и не знаем, при какой энергии симметрия восстанавливается — и происходит ли это вообще. Аргумент, согласно которому суперсимметрия должна придать массе бозона Хиггса естественность, подразумевает, что энергия, при которой суперсимметрия нарушается, на Большом адронном коллайдере должна быть уже достигнута.

Добавление суперсимметрии к Великому объединению не только еще больше увеличивает число симметрий — дополнительное преимущество в том, что это приводит к небольшому продлению времени жизни протона. Так, некоторые варианты суперсимметричной SU(5)-модели и поныне держатся на грани жизнеспособности. Тем не менее основная причина для добавления суперсимметрии заключается в числовом совпадении, которое мы обсуждали в четвертой главе, — в объединении констант взаимодействий (см. рис. 8).

Кроме того, теории Великого объединения имеют более строгую структуру, чем Стандартная модель, что добавляет им привлекательности. Скажем, теория электрослабого взаимодействия — это объединение неудовлетворительное, потому что в ней все еще есть две разные группы симметрии, U(1) и SU(2), и две соответствующие константы взаимодействий. Две эти константы связаны параметром, который носит название «слабый угол смешивания», и в Стандартной модели его значение должно определяться экспериментально. Однако в большинстве теорий Великого объединения структура групп фиксирует значение 3/8 для квадрата синуса слабого угла смешивания при энергиях Великого объединения. При экстраполяции в область низких энергий это согласуется с экспериментальными данными.

Многие физики думают, что эти числа не могут быть случайностью. Мне так часто говорили, что они просто обязаны что-то означать, что я и сама иногда верю, будто это так. Есть, правда, несколько «но», о которых вам следует знать.

Что самое важное: насколько точно константы взаимодействий сходятся к одному значению, зависит от энергии, при которой нарушается суперсимметрия. Если эта энергия выше примерно 2 ТэВ, схождение в одну точку начинает ухудшаться. Большой адронный коллайдер уже почти исключил возможность того, что область нарушения суперсимметрии лежит ниже этой энергии, — а тогда рассыпется одно из главных привлекательных свойств суперсимметрии. Более того, если мы так жаждем Великого объединения, нет никаких особых причин, заставляющих константы взаимодействий всем скопом совпадать при одной и той же энергии — сначала вполне могли бы совпасть две из них, а потом уже к ним присоединилась бы третья. Просто это не было бы так красиво, поскольку задействовало бы дополнительную область энергий.

Позвольте также упомянуть, что схождение в одну точку констант взаимодействий не связано исключительно с суперсимметрией. Это следствие добавления тяжелых частиц, которое начинает проявляться при высоких энергиях. Можно измыслить много других комбинаций дополнительных частиц, которые вынудят те кривые пересечься. В случае суперсимметрии мы не вольны выбирать дополнительные частицы, и физики считают, что эта жесткость свидетельствует в пользу теории. Более того, пересечение кривых в случае суперсимметрии стало неожиданностью, когда впервые было замечено. А как мы видели ранее, физики уделяют больше внимания неожиданным открытиям.

Вот какие есть «но». Впрочем, в пользу суперсимметрии говорит еще кое-что: некоторые из новых суперсимметричных частиц имели бы нужные свойства, чтобы составлять темную материю. Они должны были бы возникать в изобилии в ранней Вселенной, никуда не деваться, будучи стабильными, и взаимодействовать очень слабо.

Таким образом, теория суперсимметрии сочетает в себе все, что физики-теоретики выучились лелеять: симметрию, естественность, объединение и нежданные открытия. Суперсимметрия — это то, что биологи называют сверхстимулом, искусственным, но вызывающим непреодолимую тягу.

«Суперсимметрия предлагает решение всех этих проблем, которое явно проще, элегантнее и красивее, чем может предложить любая другая теория. Если наш мир суперсимметричен, то все кусочки пазла идеально подгоняются друг к другу. Чем больше мы исследуем теорию суперсимметрии, тем неотразимее она становится», — пишет специалист по физике элементарных частиц Дэн Хупер. По мнению Майкла Пескина, автора одного из самых популярных учебников по квантовой теории поля, суперсимметрия — это «следующий шаг вперед к самой полной картине мира, где мы придаем всему симметрию и красоту». Дэвид Гросс называет теорию суперсимметрии «красивой, “естественной” и уникальной» и верит, что «Эйнштейн, если бы ознакомился с [теорией суперсимметрии], полюбил бы ее». И Фрэнк Вильчек доверяет природе, хотя и более настороженно: «Все эти подсказки могут быть обманчивы, но это было бы воистину жестокой шуткой матери-природы — и воистину бестактно с ее стороны».

Подробнее читайте:
Хоссенфельдер, С. Уродливая Вселенная: как поиски красоты заводят физиков в тупик / Сабина Хоссенфельдер ; [перевод с английского Оксаны Якименко]. — Москва: Бомбора, 2021. — 304 с. — (Сенсация в науке).

Источник

ПОДЕЛИТЬСЯ:
Яндекс.Метрика
bhojpuri video dow pornthash.mobi sky movie in south
reshma fucking videos redpornvideos.mobi choda chudi wala
kerasex myxxxbase.mobi www.sexywife.com
افلام سكس كترجمة supercumtube.com اخ ينك اخته
kamapishasi orgypornvids.com girls in saree
عارية تماما freeporn8.net lkj]dhj hldv hg/ghl
افلام سكس اجنبية مترجمة meyzo.info صور سس
steamed lapulapu teleseryeepesodes.com what time is jessica soho
نيك البنت freepornarabsex.com افلام سكس جميلة
صور ازبار مصرية arabsgat.com سكس زوج الام مترجم
dtvedio pornotane.info indian porn sex.com
لحس اقدام البنات sosiano.com شعر الابط سكس
indian college sex stories tubzolina.mobi ashwitha nude
delivery bitch mama super hentaihd.org thefaplist
xxxxxxxxxxxxv indianpornvideos.me kowalskypag