Теорию процесса разработали быстро — уже через год после эксперимента фон Лауэ появились статьи Уильяма Брэгга и Георгия Вульфа, которые вывели формулу для поиска максимумов дифракции излучения, рассеянного на монокристалле. Оставалась одна проблема: научиться точно определять кристаллическую структуру кристалла по его дифракционной картине. Сложность была в том, что при рассеянии кристаллом рентгеновских волн их фаза меняется за счет многократного отражения от атомных плоскостей в кристалле. И определить эти изменения фазы колебаний в эксперименте невозможно, а именно они нужны для определения структуры — от них, как и от интенсивности отраженных лучей, зависит функция электронной плотности в кристалле, из которой расcчитываются параметры решетки.
Проблему вычисления фаз решали еще 40 лет, и только в 50-x годах XX века нужные методы появились. Правда, до этого рентгеноструктурный анализ вовсю использовали для определения простых симметричных структур, например, графита и гексаметилбензола.
С середины века рентгеноструктурный анализ стал вездесущ. Его использовали для выяснения строения неизвестных молекул и кристаллических структур веществ. Тогда же появились два других метода структурного анализа — электронография и нейтронография. Они отличаются от РСА тем, что кристалл вещества облучают не рентгеном, а электронами или нейтронами соответственно. Эти два метода имеют свои преимущества, но источники нейтронов и электронов есть далеко не во всех лабораториях, да и сами дифрактометры в этом случае сложнее и дороже. Поэтому чаще всего химики используют именно РСА, как самый доступный и надежный метод.